Pushing up Sp(4, q), q odd

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the smallest minimal blocking sets of Q(2n, q), for q an odd prime

We characterize the smallest minimal blocking sets of Q(2n, q), q an odd prime, in terms of ovoids of Q(4, q) and Q(6, q). The proofs of these results are written for q = 3, 5, 7 since for these values it was known that every ovoid of Q(4, q) is an elliptic quadric. Recently, in [2], it has been proven that for all q prime, every ovoid of Q(4, q) is an elliptic quadric. Since as many proofs as ...

متن کامل

q-ANALOGUES OF EULER’S ODD=DISTINCT THEOREM

Two q-analogues of Euler’s theorem on integer partitions with odd or distinct parts are given. A q-lecture hall theorem is given.

متن کامل

THE CHARACTER TABLE OF A SPLIT EXTENSION OF THE HEISENBERG GROUP H1(q) BY Sp(2, q), q ODD

In this paper we determine the full character table of a certain split extension H1(q)⋊Sp(2, q) of the Heisenberg group H1 by the odd-characteristic symplectic group Sp(2, q).

متن کامل

Minimal blocking sets of size q2+2 of Q(4, q), q an odd prime, do not exist

Consider the finite generalized quadrangle Q(4, q), q odd. An ovoid is a set O of points of Q(4, q) such that every line of the quadric contains exactly one point of O. A blocking set is a set B of points of Q(4, q) such that every line of the quadric contains at least one point of B. A blocking set B is called minimal if for every point p ∈ B, the set B \ {p} is not a blocking set. The GQ Q(4,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Algebra

سال: 1988

ISSN: 0021-8693

DOI: 10.1016/0021-8693(88)90101-9